In vivo conditioning of tissue-engineered heart muscle improves contractile performance.

نویسندگان

  • Ravi K Birla
  • Gregory H Borschel
  • Robert G Dennis
چکیده

The ability to engineer cardiac tissue in vitro is limited by the absence of a vasculature. In this study we describe an in vivo model which allows neovascularization of engineered cardiac tissue. Three-dimensional cardiac tissue, termed "cardioids," was engineered in vitro from the spontaneous delamination of a confluent monolayer of cardiac cells. Cardioids were sutured onto a support framework and then implanted in a subcutaneous pocket in syngeneic recipient rats. Three weeks after implantation, cardioids were recovered for in vitro force testing and histological evaluation. Staining for hematoxylin and eosin demonstrated the presence of viable cells within explanted cardioids. Immunostaining with von Willebrand factor showed the presence of vascularization. Electron micrographs revealed the presence of large amounts of aligned contractile proteins and a high degree of intercellular connectivity. The peak active force increased from an average value of 57 microN for control cardioids to 447 microN for explanted cardioids. There was also a significant increase in the specific force. There was a significant decrease in the time to peak tension and half relaxation time. Explanted cardioids could be electrically paced at frequencies of 1-5 Hz. Explanted cardioids exhibited a sigmoidal response to calcium and positive chronotropy in response to epinephrine. As the field of cardiac tissue engineering progresses, it becomes desirable to engineer larger diameter tissue equivalents and to induce angiogenesis within tissue constructs. This study describes a relatively simple in vivo model, which promotes the neovascularization of tissue-engineered heart muscle and subsequent improvement in contractile performance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimizing engineered heart tissue for therapeutic applications as surrogate heart muscle.

BACKGROUND Cardiac tissue engineering aims at providing heart muscle for cardiac regeneration. Here, we hypothesized that engineered heart tissue (EHT) can be improved by using mixed heart cell populations, culture in defined serum-free and Matrigel-free conditions, and fusion of single-unit EHTs to multi-unit heart muscle surrogates. METHODS AND RESULTS EHTs were constructed from native and ...

متن کامل

Neurotization improves contractile forces of tissue-engineered skeletal muscle.

Engineered functional skeletal muscle would be beneficial in reconstructive surgery. Our previous work successfully generated 3-dimensional vascularized skeletal muscle in vivo. Because neural signals direct muscle maturation, we hypothesized that neurotization of these constructs would increase their contractile force. Additionally, should neuromuscular junctions (NMJs) develop, indirect stimu...

متن کامل

Levo-Carnitine Reduces Oxidative Stress and Improves Contractile Functions of Fast Muscles in Type 2 Diabetic Rats

Background: Metabolic derangements in type 2 diabetes mellitus (T2DM) are likely to affect skeletal muscle contractile functions adversely. Levo-carnitine improves muscle contractile functions in healthy humans and rats and corrects metabolic derangements in T2DM. Therefore, it is likely to improve muscle contractile functions in T2DM as well. This study was designed to determine the effect of ...

متن کامل

Towards a Tissue-Engineered Contractile Fontan-Conduit: The Fate of Cardiac Myocytes in the Subpulmonary Circulation

The long-term outcome of patients with single ventricles improved over time, but remains poor compared to other congenital heart lesions with biventricular circulation. Main cause for this unfavourable outcome is the unphysiological hemodynamic of the Fontan circulation, such as subnormal systemic cardiac output and increased systemic-venous pressure. To overcome this limitation, we are develop...

متن کامل

Engineered heart tissue for regeneration of diseased hearts.

Cardiac tissue engineering aims at providing contractile heart muscle constructs for replacement therapy in vivo. At present, most cardiac tissue engineering attempts utilize heart cells from embryonic chicken and neonatal rats and scaffold materials. Over the past years our group has developed a novel technique to engineer collagen/matrigel-based cardiac muscle constructs, which we termed engi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Artificial organs

دوره 29 11  شماره 

صفحات  -

تاریخ انتشار 2005